3.4.30 \(\int \frac {\cot ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx\) [330]

3.4.30.1 Optimal result
3.4.30.2 Mathematica [C] (warning: unable to verify)
3.4.30.3 Rubi [A] (verified)
3.4.30.4 Maple [B] (warning: unable to verify)
3.4.30.5 Fricas [A] (verification not implemented)
3.4.30.6 Sympy [F]
3.4.30.7 Maxima [F]
3.4.30.8 Giac [F]
3.4.30.9 Mupad [F(-1)]

3.4.30.1 Optimal result

Integrand size = 25, antiderivative size = 78 \[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=-\frac {\arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {a-b} f}-\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{a f} \]

output
-arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f/(a-b)^(1/2)-cot 
(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2)/a/f
 
3.4.30.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.69 (sec) , antiderivative size = 179, normalized size of antiderivative = 2.29 \[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=-\frac {2 \cos ^2(e+f x) \cot (e+f x) \left (1+\frac {b \tan ^2(e+f x)}{a}\right ) \left (2 (a-b) \operatorname {Hypergeometric2F1}\left (2,2,\frac {5}{2},\frac {(a-b) \sin ^2(e+f x)}{a}\right ) \sin ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )+\frac {3 a \arcsin \left (\sqrt {\frac {(a-b) \sin ^2(e+f x)}{a}}\right ) \left (a+2 b \tan ^2(e+f x)\right )}{\sqrt {\frac {(a-b) \sin ^2(2 (e+f x)) \left (a+b \tan ^2(e+f x)\right )}{a^2}}}\right )}{3 a^2 f \sqrt {a+b \tan ^2(e+f x)}} \]

input
Integrate[Cot[e + f*x]^2/Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
(-2*Cos[e + f*x]^2*Cot[e + f*x]*(1 + (b*Tan[e + f*x]^2)/a)*(2*(a - b)*Hype 
rgeometric2F1[2, 2, 5/2, ((a - b)*Sin[e + f*x]^2)/a]*Sin[e + f*x]^2*(a + b 
*Tan[e + f*x]^2) + (3*a*ArcSin[Sqrt[((a - b)*Sin[e + f*x]^2)/a]]*(a + 2*b* 
Tan[e + f*x]^2))/Sqrt[((a - b)*Sin[2*(e + f*x)]^2*(a + b*Tan[e + f*x]^2))/ 
a^2]))/(3*a^2*f*Sqrt[a + b*Tan[e + f*x]^2])
 
3.4.30.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.97, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 4153, 382, 25, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (e+f x)^2 \sqrt {a+b \tan (e+f x)^2}}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \frac {\int \frac {\cot ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 382

\(\displaystyle \frac {\frac {\int -\frac {a}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)}{a}-\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{a}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {\int \frac {a}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)}{a}-\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)-\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{a}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {-\int \frac {1}{1-\frac {(b-a) \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}-\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{a}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {-\frac {\arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {a-b}}-\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{a}}{f}\)

input
Int[Cot[e + f*x]^2/Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
(-(ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]]/Sqrt[a - 
b]) - (Cot[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/a)/f
 

3.4.30.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 382
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/ 
(a*c*e*(m + 1))), x] - Simp[1/(a*c*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b* 
x^2)^p*(c + d*x^2)^q*Simp[(b*c + a*d)*(m + 3) + 2*(b*c*p + a*d*q) + b*d*(m 
+ 2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[ 
b*c - a*d, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.4.30.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(251\) vs. \(2(70)=140\).

Time = 4.72 (sec) , antiderivative size = 252, normalized size of antiderivative = 3.23

method result size
default \(\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) a +\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) a \sec \left (f x +e \right )-\sqrt {a -b}\, b \tan \left (f x +e \right )-\sqrt {a -b}\, a \cot \left (f x +e \right )}{f a \sqrt {a -b}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\) \(252\)

input
int(cot(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/f/a/(a-b)^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*(((a*cos(f*x+e)^2+b*sin(f*x+e)^ 
2)/(cos(f*x+e)+1)^2)^(1/2)*arctan(1/(a-b)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x 
+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*a+((a*cos(f*x+e)^2 
+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*arctan(1/(a-b)^(1/2)*((a*cos(f*x+ 
e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*a*se 
c(f*x+e)-(a-b)^(1/2)*b*tan(f*x+e)-(a-b)^(1/2)*a*cot(f*x+e))
 
3.4.30.5 Fricas [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 289, normalized size of antiderivative = 3.71 \[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\left [-\frac {a \sqrt {-a + b} \log \left (-\frac {{\left (a^{2} - 8 \, a b + 8 \, b^{2}\right )} \tan \left (f x + e\right )^{4} - 2 \, {\left (3 \, a^{2} - 4 \, a b\right )} \tan \left (f x + e\right )^{2} + a^{2} + 4 \, {\left ({\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{3} - a \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b}}{\tan \left (f x + e\right )^{4} + 2 \, \tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right ) + 4 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} {\left (a - b\right )}}{4 \, {\left (a^{2} - a b\right )} f \tan \left (f x + e\right )}, -\frac {\sqrt {a - b} a \arctan \left (-\frac {2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} \tan \left (f x + e\right )}{{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} - a}\right ) \tan \left (f x + e\right ) + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} {\left (a - b\right )}}{2 \, {\left (a^{2} - a b\right )} f \tan \left (f x + e\right )}\right ] \]

input
integrate(cot(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[-1/4*(a*sqrt(-a + b)*log(-((a^2 - 8*a*b + 8*b^2)*tan(f*x + e)^4 - 2*(3*a^ 
2 - 4*a*b)*tan(f*x + e)^2 + a^2 + 4*((a - 2*b)*tan(f*x + e)^3 - a*tan(f*x 
+ e))*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b))/(tan(f*x + e)^4 + 2*tan(f*x 
 + e)^2 + 1))*tan(f*x + e) + 4*sqrt(b*tan(f*x + e)^2 + a)*(a - b))/((a^2 - 
 a*b)*f*tan(f*x + e)), -1/2*(sqrt(a - b)*a*arctan(-2*sqrt(b*tan(f*x + e)^2 
 + a)*sqrt(a - b)*tan(f*x + e)/((a - 2*b)*tan(f*x + e)^2 - a))*tan(f*x + e 
) + 2*sqrt(b*tan(f*x + e)^2 + a)*(a - b))/((a^2 - a*b)*f*tan(f*x + e))]
 
3.4.30.6 Sympy [F]

\[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\int \frac {\cot ^{2}{\left (e + f x \right )}}{\sqrt {a + b \tan ^{2}{\left (e + f x \right )}}}\, dx \]

input
integrate(cot(f*x+e)**2/(a+b*tan(f*x+e)**2)**(1/2),x)
 
output
Integral(cot(e + f*x)**2/sqrt(a + b*tan(e + f*x)**2), x)
 
3.4.30.7 Maxima [F]

\[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\int { \frac {\cot \left (f x + e\right )^{2}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}} \,d x } \]

input
integrate(cot(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(cot(f*x + e)^2/sqrt(b*tan(f*x + e)^2 + a), x)
 
3.4.30.8 Giac [F]

\[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\int { \frac {\cot \left (f x + e\right )^{2}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}} \,d x } \]

input
integrate(cot(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.4.30.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx=\int \frac {{\mathrm {cot}\left (e+f\,x\right )}^2}{\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}} \,d x \]

input
int(cot(e + f*x)^2/(a + b*tan(e + f*x)^2)^(1/2),x)
 
output
int(cot(e + f*x)^2/(a + b*tan(e + f*x)^2)^(1/2), x)